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O N  FINDING MINIMUM-DIAMETER CLIQUE TREES 

Jean R. S. Blair 
Barry W. Peyton 

Abstract 

It is well-known that any chordal graph can be represented as a clique tree 
(acyclic hypergraph, join tree). Since some chordal graphs have many distinct 
clique tree representations, it  is interesting to consider which one is most desirable 
under various circumstances. A clique tree of minimum diameter (or height) is 
sometimes a natural candidate when choosing clique trees to be processed in a 

parallel computing environment. 
This paper introduces a linear time algorithm for computing a minimum- 

diameter clique tree. The new algorithm is an analogue of the natiiral greedy 
algorithm for rooting an ordinary tree in order to minimize its height. It has poten- 
tial application in the development of parallel algorithms for both knowledge-based 
systems and the solution of sparse linear systems of equations. 
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1. Introduction 

Chordal graphs arise in several application areas including data-base management sys- 

tems [1,11,30], knowledge-based systems [3,19,22], and the solution of sparse symmetric 

linear systems of equations [15,23,25,26,28]. A clique tree representation of a chordal 

graph often reduces the size of the data structure needed to store the graph, permitting 
the use of extremely efficient algorithms that take advantage of the compactness of the 
representation [22,23,30]. However, using a clique tree to  represent a chordal graph is 
an ambiguous proposition in the sense that there may be more than one clique tree 

for a given chordal graph. In fact, Gavril, IIo, and Lee [14,17] have shown that a 
tight upper bound on the number of distinct clique trees is an exponential function of 
the number of nodes in the graph. It is interesting from a theoretical point of view 
and potentially beneficial from a practical standpoint to consider how one clique tree 

representation may be better than another in a given context. 
The algorithm presented in this paper is motivated primarily by the following ques- 

tion: Which clique trees are most suitable as input for parallel algorithms in various 
application areas? In at least some cases, a clique tree of minimum diameter (or, 
equivalently, minimum height)l is a natural candidate. In particular this is the case 
when the parallel algorithm in question has a leading (or otherwise significant) term 
in its time complexity that grows with the height of the clique tree. For the last two 
application areas mentioned above, we are aware of parallel algorithms under study 
for which this holds. Discussion of thesc application areas appears in the concluding 

section. 

The essential character of the algorithm introduced here is very simple. Consider 

the problem of selecting a root that minimizes the height of a tree T .  One way to  solve 

this problem is a simple greedy algorithm that repeats the following major step until 

there are no nodes remaining in the tree: determine the leaf nodes (i.e., nodes of degree 
one) of the current tree and eliminate cach of these nodes and the single edge incident 

upon it. The last major step eliminates either one or two nodes, and the height of T is 
minimized by rooting it at one of these nodes. 

The algorithm presented here for finding a minimum-diameter clique tree is an 

analogue of this algorithm: it eliminates a large set of “leaf c l i ~ u e s ~ ~  from the current 
chordal graph at  each major step. One issue to  be addressed is how this large set 
of leaf cliques can be computed with no a priori knowledge of a clique tree in which 

they are leaves. The first set of results deals with this issue. Subsequent results link 

the property of having a rnazirnurn number of leaves with reduction of the distances 

between cliques, after which it is quite easy to  prove that the new algorithm works 
correctly. 

Our algorithm is a greedy algorithm, and other greedy algorithms closely related 

‘This equivalence holds because a clique tree can be rooted at any node. 
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to  ours have appeared in the literature [15,25]. It should be notcd that a minimum- 

diameter clique tree can be obtained easily from the output of an algorithm presented 

in Gilbert and Schreiber [15]. Moreover, the number of major steps in that algorithm is 
the height of a minimum-diameter clique tree. IIowever, clique trees were not the object 

of study in [15], and furthermore the authors do not prove that the number of major 

steps is minimized. A simple extension of the analysis in this gapes demonstrates that 
the algorithm in [15] does use the minimum number of major steps, and consequently 
has associated with it a minimum-diameter clique tree. 

We hope the reader will find the lernrnas and propositions leading up to  our main 
result interesting in their own right. In selecting notation and organizing the material, 
we have striven to  make the results easily accessible t o  as broad an audience as possible. 
More specifically, the results presented here may be of some value in providing a broad 

spectrum of readers with a more concrete grasp of the primary features and essential 

nature of clique trees and the chordal graphs they represent. In keeping with this 
expository goal, we have chosen to make most of the presentation as self-contained as 

possible; €or example, we have included the proofs of two key results in the published 
literature. 

Section 2 introduces some terminology and 
provides background results on clique trees. Section 3 contains a characterization of 
leaf cliques and also discusses clique trees that have as many leaves as possible. The 

new algorithm and its proof of correctness are found in Section 4. Lewis et al. [23] 
contains many of the details required to  demonstrate that the new algorithm has a 

linear time implementation. Section 5 briefly outlines essential material from [23], 
presents a detailed version of our algorithm that addresses several key implementation 
issues not addressed in [23], and presents other material needed to  verify the linear 

time complexity of the algorithm. Concluding remarks can be found in Section 6. 

The paper is organized as follows. 

2, Clique trees: background 

This section contains terminology and background material on clique trees. We as- 
slime the reader is familiar with standard graph terminology (see, for cxarnple, Golorn- 

bic [16]). For easy reference we have included, in an appendix, a table of informal 
definitions for most of the notation introduced here and in later sections of the paper. 

‘Yo make the notation easier to  read, we adhere to  the following. 

1. When needed, a subscript is used to identify which chordal graph or clique tree 

the item pertains to. This subscript is suppressed where the relevant graph is 
kpiown by context. 

2. In almost every case there is a strong mnemonic association between the symbol 

and what it represents: ?’ for trees, I< for cliques, etc. 
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2.1. Definition of clique trees 

Let G = (V, E )  be a chordal2 graph and KG = { K l ,  K 2 , .  . . , ICnz} be the set containing 
the maximal cliques3 of G. Throughout this paper, the graph G is assumed to  be 
connected merely to  avoid vacuous technical chitter in the proofs. That all definitions 
and results contained in this paper generalize immediately to disconnected chordal 

graphs should be readily apparent. 
While many characterizations and properties of chordal graphs have appeared in the 

published literature [1,6,12,16,28], we restrict our attention to  those results connecting 
chordal graphs to clique trees (also called acyclic hypergraphs or join trees). Our 
departure point in defining clique trees is the following well-known result, which we 

state without proof. 

T h e o r e m  2.1 (Walter [31], Gavril [13], Bunernan  [4]). A graph G = ( V , E )  is 
chordal i f  and only i f  there exists a tree 7‘ = (I&,€) that satisfies the following 
property: €or every node v E V ,  the set of cliques containing v induces a subtree o€T. 

For any chordal graph G, we shall let 7G denote the set of all trees T = ( K G , € )  that 

satisfy this property, and we shall refer to  any member of 7;: as a clique tree of the 
underlying chordal graph G. 

2.2. M a x i m u m  spanning  tree characterization 

Associated with each chordal graph G is a clique intersection graph defined as follows. 
The node set of the clique intersection graph is the set of cliques KG. Two distinct 
cliques K and K‘ are connected by an edge if their intersection is nonempty; moreover, 

each such edge {A’, K’} is assigned a positive weight given by IK 17 K’I. 
Bernstein, Goodman, and Gavril [2,14] have shown that the set of clique trees .I, 

is precisely the set of maximum-weight spanning trees of the clique interscction graph 

associated with G. The proof of this result, included here in Theorem 2.2, closely 

follows the one found in Gavril [14]. To prove Theorem 2.2 and later results we need 

the following simple corollary of Theorem 2.1. 

Corollary 1. A tree T = (KG, E )  is a cliyue tree o f G  if and only i f  for every pair o f  
distinct cliques K ,  K‘ E K G ,  the interscction K n K’ is contained in every cliyue on the 
path connecting K and h” in tho tree. 

Proof The result follows easily from the definition of clique trees and the fact that the 

intersection of any two subtrees of a tree is likewise a tree. I 

2A graph is chordal (triangulated, rigid circuit) if every cycle of length 2 4 contains a chord, Le., 
an edge connecting two non-adjacent nodes in the cycle. 

3Throughoiit this paper the term clique always refers to a maximal clique. The term maximal clique 
is used only where emphasis on maximality seems warranted. To avoid confusion, any submaximal clique 
is referred to as a complete subgraph of G. 
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Theorem 2.2 (Rernstein [2]). A tree T = ( K G ,  E )  is a clique tree of G if and only 

if i t  is a iiiaxirnimm-weight spanning tree of the clique intersection graph of G. 

Proof. First, assume T is a clique tree and choose two cliques Ir‘ and K‘ not connected 
by an edge in T .  Consider the cycle formed by adding the edge {Ii,K’) to T .  By 
Corollary 1, every edge along this path has weight no smaller than IIi n K’l. It is 
well-known that a tree with this property is a maximum-weight spanning tree of the 

graph (see, for example, [29, pp. 71-72]). 

Now, suppose that ?hst is a maxiinurn-weighted spanning tree of the clique inter- 
srction graph of G. Let !LLt be a clique tree having a maximum number of edges in 

common with Tmst. Assume for the piirpose of contradiction that there is an edge 

{1<1,1<2} of Thst that is not an edge of Y i t .  Let TI = (K1 ,E l )  and T2 : ( & , E 2 )  be 
the two subtrees of Ymst obtained by removing the edge { I < l , l < 2 }  from Tmst. Note 

that { I C 1 , & }  partitions K C ,  and associated with this partition is a cut set of edges 
consisting of all edges in the clique interectinn graph with one end-point in 1c1 and the 
other in &. It is well-known that any cycle in the clique intersection graph containing 
one edge from the cut set must contain another edge from the cut set as wcll. Now, 
consider lite cycle (in Tct)  obtained by adding the edge {ICl ,  IC2} to Tct, and select from 

this cycle in 7Lf one of the edges { 1 < 3 , I < 4 }  # {ICl ,  I<,} that belongs to the cut set. 
Note that {I<3,1<4} is an edge of Tct, but it is not an edge of Tmst. Since T,, is a 

clique tree, it follows froin Corollary 1 that I i l  n IC2 C Ir‘3 n Kq. However, if IC1 n K2 
were a proper subset of IC3 n IC4. then replacing {Ici, ICz} in Tmst with { f C 3 ,  IC,} would 
result in a spanning tree of greatcr weight, contrary to the maximality of Tmst’s weight. 

Hence, IC1 fl IC2 = K 3  n l<z l .  Consider the tree obtained by replacing { I C 3 , K 4 }  in 'let 
with the edge {1<1,1<2}. LVe leave it for the reader to  verify that the resulting tree 
satisfies Theorem 2 1 ,  and is thus a clique tree of G. ‘l’his new clique tree moreover 

has one more edge iii common with TInSf than originally possessed by Tct, giving us the 
contradiction me seek. Conseqiiently, 2’fil,, - Tct and the result holds. is 

2.3. Clique tree edges and  graph separators 

A node separator S c I/ for two nodes Q and b is any node set whose removal from 
G results in a graph in  which a and b are in separate connected components. If no 
proper subset of S’ has t h i s  property, then S is said to be a rnininzal a-h separator. 
A well-known result states that a graph G is chordal if and only if every minimal a-b 
separator is a complete subgraph of G [6,16,28]. For any clique tree T = (K,, E )  E 7~ 
consider the rnultiset defined by 

M T  := { I ;  n I<’ I {I<,I<’} E E } .  
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Ho and Lee [18] showed that for each minimal a-b sepa,rator S of C ,  MT contains a 

number of copies of S that does not vary with T .  (For brevity, we will refer to  each 
member of M T  as a separator.) Below, we provide a simple proof of the invariance of 

M T  over all clique trees T E 7 ~ ,  which can be viewed as a weaker form of the result 
in [18]. 

Theorem 2.3 (Ho and Lee [IS]). The rnirltiset of separators is the same. for every 

clique tree T E 7 ~ .  

Proof. For the purpose of contradiction, suppose there exist two distinct clique trees 

T,T' E 7G for which M T  # M T ~ .  From among the cliquc trees T' E 7 G  for which 
MT,  # M T ,  choose T' so that it shares as many edges as possible with T .  (Note 

that T and 1' cannot share the same edge set, for then they also would share the same 
multiset of separators.) Let {Kl,  K 2 }  be an edge of T that docs not belong to TI. 
Consider the cycle obtained by adding the edge { K 1 , K 2 }  to  T'. There must be an 

edge ( K 3 ,  h'4} of the cycle that is contained in T' but not in T .  From Corollary 1 and 

Theorem 2.2 it follows that K 3  n IC4 = ,Til n K 2 .  By Theorem 2.2, replacing (K3, K4} 
in 1' with {IC1, K 2 }  results in a clique tree, and moreover the multiset of separators is 
the same as that of T'. Since the modified tree shares one more edge with T ,  contrary 

to  our assumption about TI, the result follows. 

Henceforth, let M G  denote the multiset of separators associated with each clique 
tree in IC. For any set of nodes S C V ,  the set of cbiques containing S ,  denoted by 

K ( S > ,  is given by 
K(S) := (K E K;G I s c IC}. 

(Usually S will be a separator taken from MG.)  It is worth emphasizing that every 

separator S E M G  is contained in at least two cliques (Le., IlC(S)l 2 2). 

For any clique IC, the set of separcltors belonging to K ,  denoted by S ( K ) ,  is given 

by 
S ( K )  := { S  E M G  I S C IC}. 

Note that S ( K )  contains one copy of each member of the niultiset NG that is contained 

in K .  The set S(K) contains each separator from S ( K )  that is maximal with respect 
to  set inclusion among the members of 5(A7. In other words, S(K) is given by 

- 
S ( K )  := { S  E S ( K )  I S is properly contained in no separator S' E S ( K ) } .  

Loosely speaking, the following simple lcmrna states that in any clique tree the members 

of S(f<) must be "used" by at least one of the tree edges incident on K. 

Lemma 1. Let K E K;G and 7' E TG. Thcn for every separator S E g(X) there is at 

least one edge { K ,  K'} of T for which K n K' = S .  
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Proof. Choose a separator S E S(K) ,  and choose P E K ( S )  - {IC}.4 Consider the 
path A' = K 1 ,  P i 2 , .  . . , Ii, = P from K to  P in T .  It follows from Corollary 1 that 
S C IC; for 1 5 i 5 T ,  and hence S C K n h'2. From the maximality of S among the 
separators in S ( K )  we have K n K2 = S ,  which proves the result. 

3. Leaf cliques 

For any clique tree T E Tc;~ let LT (C KG) be the set containing the leaves of T 
(i.e, the members of K G  with degree one in 7'). We then let LG, the leaf cliques of 

G, be the set containing every clique that is a leaf in a t  least one clique tree 2' E 
TG. Practical iniplemen tation of our minimurn-diameter clique tree algorithm requires 
access to  the set Lc. 'The first subsection below contains a simple characterization 

of LG that ultimately leads to  an efficient method for computing LG. With LG in 

hand, the minimum-diameter clique tree algorithm must then compute a set of leaf 

cliques C,,, C LG such that L,,,, = CT for at least one clique tree T E '&, and 
moreover IE;.I 2 I LT~~  for every clique tree T' E TG. The second subsection contains 
a characterization of these inazirnum cardinclity leaf sets Ern,, C: CG. An efficient 

method for computing LmaT is presented later in Section 5.1. 

3.1. A characterization of leaf cliques 

The next lemma gives a suficient condition for membership in Cc. ' rhe proof of 
this lcm~lla and the spceific clique tree T' constructed in the proof are important 
departure points in the next section. Lemma 3 confirms that the condition in Lemma 2 
is necessary as well a.s sufficient. 

Lemma 2 .  Jf I%(P<i>l L 1, thcai li is a leaf in some clique tree T' E 7G. 

Proof. Let S be the sole member of s(Ii) ,  and suppose that li is not a leaf of T E 7~ 
(see Figure 3.1).  Choose P E K ( S )  - {IC}. It follows from Corollary 1 that S C P' 
where P' is the clique adjacent to li' on the path from Ii to  P in T (possibly Y p  = P) .  
Consider a clique C1 # P' that i s  also adjacent to In' in T .  (Such a clique must exist 

since h' is not a leaf in T.)  By Corollary 1, C1 n P g C1 n li. Furthermore, since S is 

the only member of s ( I C ) ,  we have C1 n I< C S e P.  It follows that C1 n Ii == c'1 n P ,  
and hence the edges {Cl, Pi} and {Cl, P }  have the same weight. 'rhus, by Theorem 2.2 
the tree obtained from 'I' by first removing the edge {Cl, Ii} and then adding the edge 
{Cl ,  P} is also a clique tree. Repeating this process for every clique C, + I" adjacent 
to li in 1', we obtain a new clique tree Y "  in which I< is a leaf (see Figure 3.1), and 

*Thronghout this paper the binary set difference operator i s  "-". 
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Figure 3.1: Transformation of T into T’ in which K is a leaf, as discussed in the proof 
of Lemma 2. 

this concludes the proof. 

The spccific operation that transformed the clique tree T (in which I( is not a leaf) 
into the clique tree T‘ (in which K is a leaf) will be used in several subsequcnt proofs. 

We note here that the parameters required for this operation are a clique tree T ,  a 

leaf clique K E CG - CT and an arbitrary clique P # IC for which S(X) = (IC n Y } .  
When P is not adjacent to  K in T ,  these two cliques determine a third clique of 

interest, namely the clique P‘ adjacent to  K on the path in T connecting K and Y. 
Since K n P‘ = K n P ,  P’ can play thc role of P ,  as will be the case in an important 
application of this operation in Section 4. However, when this operation is used in 
other proofs, P will be chosen in such a way that it may not be adjacent to K. 

The next lemma completes the first characterization of the cliques in CG. 

Lemma 3. IC E CG ifand only if IS(K)l = 1. 

Proof. Sufficiency follows iniinediately from Lemma 2. To prove necessity, choose 
K E CG and let T E 7~ be a clique tree in which 11‘ is a leaf. Let 1” be the single 

clique adjacent to K in T .  Since K n P’ is the only separator associatcd with an edge 
incident on K in T ,  it  follows from LcrnIna 1 that K n  P’ is the only member of F( IC). 

A node in an ordinary tree is a leaf if it has only one neighbor. Lemma 3 is an 

analogue of this property for leaf cliques of a chordal graph. That is, a clique in a 



- 8 -  

chordal graph i s  a leaf clique if it has only one maximnl separator through which it can 
he joined to  neighbors in a clique tree. 

3.2. Maximum cardinality leaf sets 

It is interesting to consider precisely which subsets of CG constitute a set of leaves LT 
for at least one clique tree 7’ E ‘fc. However, for our purposes we restrict OUT attention 

to  a simpler question, that of characterizing the leaf sets t r  of maximum cardinality. 

That is, we need a useful characterization of the leaf sets LT for which 2 ICpl 
for every clique tree T’ G ‘TG- 

To that end, w e  introduce sone more notation. We have shown in Lemma 3 that 
each leaf clique K E Cc; has associated with it a single separator S E M G  that is 

maximal among the separators contained in K .  Let S(&j be the set containing a 

siilgle copy of each separator associated with a leaf in this manner. More precisely, 

For every Eeafsepamtor S E S(&j, let L ( S )  be the subset of LG defined by 

L(5’j := (IC E L G  1 S(K) = { S } } .  

More informally, L(S) contains the “cohort” of leaf cliques clustered around the leaf 

separator S .  It is important to  note that C ( S )  may be a proper subset of the set of 
leaf cliques that contain S .  For two leaf separators S ,  SI E ~ ( C G )  where S C SI, any 
clique I< E t ( S ’ )  contains both leaf separators S and S I .  In this case, however, we 
observe that Ii # L(S) even though A’ E K ( S ) .  Indeed, each leaf belongs to  precisely 
one leaf cohort set, and therefore the collection of leaf cohort sets 

forms a p r t i t i on  of LG. 

Lemma 4. Assume llC~.l 2 3. For a leaf sepra tor  S E S(I&Gj,  there exists a clique 
tree T E TG €or which C ( S )  C CT i€and only i f  C(S) c K ( S )  (i.e., K ( S )  - L ( S )  f a). 
Proof. Choose a leaf separator S f s(&) and assume that L ( S )  5 CT for some 
clique tree I1’ E TG. It follows from Corollary 1 that IC(S) induces a subtree of ?’. Since 
~KGI 2 3 and IK(S)l 2 2, X(S) contains an interior clique P of T (i-e., Y E K(,ci>-Lrr.>. 
Since C ( S )  C_ CT, we have P E K(S) -- L ( S ) ,  completing the first half of the proof. 

To prove thc converse assume K ( S )  - L(S) # 0, and let P E # ( S )  - L(S) .  Let 

T E T G ~  and suppose that there exists a clique IC E L ( S j  - Cf. As in the proof of 
Lemma 2 (sce Figure 3.1),  we can replace each edge {C,It’} incident on K (except 
{A’, Pi)) with the corresponding edge (6,  P }  to obtain a clique tree T‘ in which I< is a 
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leaf. Repeating this operation for each clique in C(S) - CT transforms T into a clique 
tree T' for which L(S) Cp, giving us the result. 

Lemma 5. Assume l K ~ l  2 3. Then l C ~ l  2 ICpI for every T' E 7~. if and only if T 
has the following two properties: 

I. For S E ~ ( C G ) ,  if t ( S )  c K ( S ) ,  then t ( S )  C_ CT. 

2. For S E S(Cc) ,  if L ( S )  = X;(S), then CT contains a.ll but one of the cfiques in 

W). 
Proof. Suppose properties 1 and 2 hold. By Lemma 4, if L ( S )  = K ( S ) ,  then for every 

clique tree T E 7~ at least one member of L ( S )  is excluded from LT. It follows that 
no clique tree can have more leaves than one that posesses properties 1 and 2. 

Suppose property 1 does not hold for some clique tree T E TG. Then for some 
leaf separator S E ~ ( C C , )  for which L ( S )  c K ( S )  we have a clique K E L ( S )  that 
is not a leaf of T .  Since IK,l 2 3 and ]lC(S)l 2 2, we can choose an interior clique 

P E K ( S )  - CT. As in the proof of Lemma 2 (see Figure 3.1), we can replace each edge 
{C, K }  incident on K (except {K, P'}) with the corresponding edge {C, P} to obtain 

a clique tree T' in which Ii is a leaf. Note that P is the only clique in T' with more 
neighbors than it had in T .  Since P is not a leaf in T and all leaves of T remain leaves 
in T', it follows that T' has one more leaf than T ,  and hence property 1 holds for any 

clique tree that has the maximum number of leaves. 

A similar argument can be used to  verify property 2, as follows. Suppose property 2 
does not hold for some clique tree T E 7 ~ .  Then IL(S)-C,l # 1 for some leaf separator 

S E ~ ( C G )  for which C ( S )  = Ic(S) .  From Lemma 4 we know that I L (S )  - LTI # 0. 
Thus, we have two or more cliques in C ( S )  that are not leaves of T .  Let li and P be 

two such cliques. From this point, the argument runs the same course as that found in 

the previous paragraph, completing the proof. 

Lemma 5 characterizes maximum cardinality leaf sets Cmnz: for each leaf separator 

S E ~ ( L G ) ,  either all of the lea,f cliques from L ( S )  are included in Lc,,,, or all but 
one of the leaf cliques from t ( S )  are included in L,,,. Furthermore, exclusion of a 

single clique of C(S) from t,,, occurs if and only if the only cliques containing S are 
those in C ( S )  (;.e., K ( S )  = L(S)) .  

4. A minirnum-diameter clique tree algorit hin 

The characterization of maximum cardinality leaf sets given in the previous section 
provides the basis for an algorithm that generates minimum-diameter clique trees from 
the bottom up (i.e., from the leaves up to  the root). This section gives a high-level 
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description of our bottom-up algorithm and proves that it does indeed generate a 

mimimum-diameter clique tree. 
Algorithms for generating clique trees are based on the detection of simplicial nodes, 

which are defined as follows. A simplicial node in G is any node whose adjacency set 

forms a complete subgraph in G. It is well-known that any non-trivial chordal graph has 

at least two simplicial nodes [6], and moreover that any chordal graph can be reduced 

to  the null graph by successive removal of simplical nodes [6,12,16,25]. The order in 

which the simplicial nodes are removed i s  known as a perfect elimination ordering. It 
is trivial to show that a node is simplicial if and only if it belongs to precisely one 

maximal clique. This simple characterization of simplicial nodes has been useful in 
various applications. The result is stated formally and proved in [21,23], and it is 
stated informally and used without proof in [8,15,30]. 

Maximum cardinality search [30] i s  a linear-time algorithm for generating a perfect 
elimination ordering of a chordal graph. With a few simple extensions, this algorithm 

can also generate the set of cliques KG and the set of edges E of a clique tree T E 
7 G  [3,26,30]. Blair et a]. [3] have shown that this algorithm for generating a clique tree 

can be viewed as Prim’s algorithm [27] for finding a maximum-weight spanning tree of 

the clique intersection graph of G. The algorithm presented in this paper however does 

not fall within this general framework, where the clique tree is generated from a known 
root in top-down fashion to the leaves. Instead, the new algorithm must generate a 

clique tree from an initial set of leaves in a bottom-up fashion, eventually determining 

a root clique that is not known in advance. 
The next subsection describes an algorithm for generating an arbitrary clique tree 

from the bottom up by successive removal of leaf cliques from the chordal 

graph. This approach to generating clique trees is refined in Section 4.2 where we 

present our new algorithm, which removes a maximum cardinality leaf set at each 
major step. Our main result, presented in Section 4.3, demonstrates that a clique tree 

generated by the new algorithm also has minimum diameter. 

4.1. A b o t t o m - u p  clique tree algorithm 

To describe the bottom-up algorithm for generating an arbitrary clique tree, we need 
the following definitions and notation. For each clique K E KG we define the parameter 

p ( K )  to  be the number of simplicial nodes contained in K .  Another needed parameter 

is o(h’), defined to be the size of the largest separator in ‘S(K).  Lemma 6 contains a 
formula for .(IC) that is useful in Section 5 .  Lemma 7 uses the parameters .(I<) and 
p( K )  to characterize Cc. 

Lemma 6. ForK E KG, 
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Proof. Let K , K '  E ?&. Applying Corollary 1 to any clique tree T E 7G, we have 
K n K' C S for some separator S E S ( K ) .  The definition of a ( K )  implies that 
o(K) 2 1.K n IC'\, and implies moreover that there exists K" E Kcc; - {K} such that 

a ( K )  = IK n K"I, which proves the result. 

Lemma 7. K E LG if and only if a ( K )  + p ( K )  = IKI. 

Proof. Suppose K E CG and let S be the single separator in S(K) (see Lemma 3). 
From Corollary 1 and the fact that S(I<) = {S}, we have K n ICf C S for every clique 
K' E KG - { K } .  Hence, any node 21 E Ir' - S is found in no other clique of the 

graph. Thus, we have p ( K )  2 IK - SI, and since IK(S)l 2 2, none of the nodes in S is 

simplicial. Therefore p ( K )  = JK - SI, which along with o(X) = ISl, proves necessity. 
To prove sufficiency, suppose a(K) + p ( K )  = IKI. Choose S E S ( K )  such that 

IS1 = o(K). Since p ( K )  = IKI - a ( K )  and none of the nodes in S are sirnplicial, every 
node in K - S is simplicial. Since each simplicial node belongs to only one clique, it 
can belong to no separator in M G .  Consequently, S(K) = { S } ,  and by Lemma 3, 
K E C G .  

From Lemma 7, it is clear that any leaf clique li E tc; can be partitioned into two 

sets 
K = Sim(K)  u S e p ( K ) ,  

where Sim(li') contains p ( K )  simplicial nodes and Sep(K)  contains the o(K) nodes 
that constitute the leaf separator associated with K .  

Our bottom-up algorithm for generating a clique tree is based on successive elimi- 

nation of leaf cliques from the chordal graph. For K E Lc;, G \ Sim(K) denotes the 

graph obtained by eliminating the simplicial nodes in S i m ( K )  and their incident edges 

from G. In other words, G \ Sim(1i) is the subgraph of G induced by V - Sim(K) .  
Since S e p ( K ) ,  which contains the nodes of K remaining in G \ Sim(K) ,  is contained 

in a t  least one other maximal clique K' of 6, K disappears from G \ Sirn(K) as a 
maximal clique, and can be viewed as "absorbed" by ICf. Moreover, since the nodes 

of Sim(K)  belong to no other maximal clique of G, the other maximal cliques of G 
remain unchanged in G \ S im(K) .  Thus, G \ Sin%( K )  is precisely the chordal graph 
whose set of maximal cliques is given by Kc; - {X}. 

Figure 4.1 displays an algorithm for generating a clique tree from the bottom up, 

and Lemma 8 confirms that the algorithm is correct. Note that the algorithm generates 
a sequence of chordal graphs. From now on a subscript is used, as needed, to  identify 

which graph a set or parameter pertains to (e.g., 5 ' i m ~ ( K )  in line 7 of the algorithm). 

Lemma 8. The algorithm in Figlire 4.1 generates a clique tree. 

Proof. It is easy to  show that the edge set contained in E at the end of the algorithm 

is the edge set of a tree T ,  and we leave it for the reader to verify this. Thc proof 
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01 
02 
03 
04 
05 
06 
07 
08 

E + 8  
I€ +- G 
while lKnl 2 2 do 

Choose K EI: CH 
Choose P E KH - { K }  for which SepH(K) C P 
E + E  U { K , P }  
H + FI \ SirnH(1i)  

end while 

Figure 4.1: Algorithm for generating a clique tree. 

that T is indeed a clique tree is by induction on the number of cliques in the graph. 
The base step is trivial. For the induction step, let G be a chordal graph with ‘m 2 2 

cliques, and suppose that the algorithm generates a clique tree for any chordal graph 

with fewer than m cliques. Let K and Y be, respectively, the first leaf clique and the 
first “parent” clique chosen by the algorithm, so that {IC,P} is the edge added to  E 
during the first step. From the way the edges are chosen, Ii is necessarily a leaf of 

7’. Let ?“ = T \ {IC}. Clearly, 1’’ is the tree generated by subsequent steps of the 
algorithm. Moreover, steps 2 -m of the algorithm axe precisely the sanw a s  applying 

the algorithm directly to  the graph G \ Sim,(K) with no prior elimination step. It 
follows from the induction hypothesis that T’ is a clique tree of the chordal graph 
G \ Sim(K).  Consequently, Corollary 1 holds in T for every pair of cliques taken from 

KG - {K}. All that remains to  be shown is that for every clique K’ E B&c -- { K } ,  the 

intersection fi n K’ is contained in every clique on the path connecting K and Ii’ in 
7‘. The statement is vacuously true i f f<’  = P; thus we assume Ii’ # P. Since K E LG 

and Sepc(fi) C P (see line 5 of the algorithm), we have 

Moreover, by the induction hypothesis, P n li‘ is contained in every clique on the path 

connecting P with IC’, which obtains the result. E 

4.2. Incorporating maximum cardinality leaf sets  in the algorithm 

The new minimum-diameter clique tree algorithm is a special case of the algorithm in 
Figure 4.1. It is however a bit more complicated, with an outer loop that selects a 

maximum cardinality leaf set C,,, to  be removed at  each major step, and an inner 
loop that reiiioves the members of C,,, one after another in arbitrary order. Clearly, 
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this approach is based on the assumption that elimination of a clique I< E L,,, by an 

iteration of the inner loop causes none of the uneliminated cliques K‘ E C,,, to  become 

a non-leaf in the reduced graph. To address this issue, let T E 7 G  and I< E C T ,  and 

consider the reduced graph G‘ = G\Sim~(lr‘) and the tree T’ = T\{K}. The following 
simple lemma contains the properties of G‘ and T’ needed to  deal with this issue and 

other closely related issues associated with our algorithm. (The fourth property is 
needed elsewhere, but it is most convenient to  include it here.) 

Lemma 9. Let T E 7 G  and K E CT, and consider T’ = T \ {K} and G’ = G \ 
Sirnc(K). The following properties hold for G, T ,  G’ and T’: 

1. I” E TGI.  

2. L T  - { I { }  c CTt c Lcl. 

Proof Let K‘, I<’‘ E 1cct = Kc - { K } .  From the definition of T and T’, it follows 

that the path connecting K’ and K” in 7” is identical to  the one connecting the pair 
in 2”. Thus, from Corollary 1 (applied to  T E 7 G )  we have T’ E 7&. Clearly, any leaf 
in LT - { K }  remains a leaf in T‘, and thus LT - {K} C L T ~  C & I .  

Choose K’ E CT - {K} and let {IC’ ,  A’”} be the single edge incident on K’ in 2”. 
Since {A”,K’‘} is also the single edge incident on K’ in T’, it follows from Lemma 1 
that K‘ n I<” = SepGt(K’)  = SepG(1r”). Futhermore, since lK’l i s  unchanged and 

K’ E Cp, by Lemma 7 we have S im~t (K‘ )  = Sinzg(K’). Finally, the fourth property 

(h., M Q  = M G  - { S e p G ( l c ) } )  is an imniediatc consequence of property 1 and the 
definition of separator multisets. 

/ 
Our algorithm for computing a minimum-diameter clique trce is shown in Figure 4.2. 

At the beginning of each major step (i.e., each iteration of the while loop), H is the 

chordal graph remaining to  be eliminated. After selecting a maxiinurn cardinality leaf 

set L,,, in line 4, the inner loop (lines 5-9) eliminates the leaf cliques in Cmax one at 

a time in some arbitrary order. 
Let T E 7 G  be a clique tree for which LT is the leaf set L,,, C CG chosen for 

elimination during the first iteration of the while loop. Applying Lemma 9 to T ,  we 

justify several details found in the inner loop with the following remarks. 

Remark 1. Line 6 assumes the existence of an appropriate “parent” I-’ E XH - 
L,,, for each leaf Ii’ E L,,,. For each K E C,,,, the single clique P adjacent to  
K E CT is such a parent. 



- 14 - 

01 Em,,  + 0 
02 H G; II' - G 
03 while l ? C ~ l  2 3 do 
04 Choose a inaxirnum cardinality leaf set C,,, C LJJ 
05 
06 
07 
08 
09 end for 
10 H +-- H' 
11 end while 
12 if IFCHI = 2 do 
13 
14 end if 

for K E c,,,,, do 
Choose P E 1 c ~  - L,,, that also contains S e p H ( K )  

Em,, + Em,, u { I c , P }  
H' +- H' \ ,Qimff(K) 

F,,,, t E,,, U { K ,  P> where {li, P }  = ?CH. 

Figure 4.2: Algorithm for generating a minimum-diameter clique tree. 

Remark 2, Properties 1 and 2 ensure that after the removal of a leaf clique in 

the inner loop, the uneliminated members of Lma, remain leaves in the reduced graph, 

as required during subsequent iterations. 

Remark 3. Properties 1 and 3 ensure that , Q e p H , ( K )  = S e p ~ ( 1 i ' )  and S i r n ~ , ( K )  = 
S i m ~ ( 1 i )  for each leaf clique X E C,,,, in the reduced chordal graph. In other words, 

not only do the leaves in L,,, remain leaves as the inner loop progresses through the 

eliiiiination steps, they also retain the same separator and simplicial node sets that they 
had when chosen for elimination at the beginning of the major step. The invariance of 
these two sets is used explicitly in lines 6 and 8 of the algorithm. 

The followirig lemma plays a key role in the next subsection where we prove that 

any clique tree generated by the algorithm has minimum diameter. 

Lemma 10. The algorithm in Figure 4.2 generates a clique tree T for which CT = 
L:,,, C_: LG is the maximum cardinality leaf set eliminated by the first major step o f  
the algorithm. 

Proof. As in the proof of Lemma 8, we leave it for the reader to verify that the new 
algorithm generates a tree. It follows from R,emark 2 that the new algorithm is a 
special case of the algorithm in Figure 4.1, and therefore by Lemma 8 the tree Tals 
generated by the algorithm is a clique tree. Consider the maximum cardinality leaf set 

L,,, 5 CG eliminated by the first major step of the algorithm. During the first major 
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step, the algorithm adds to  Emin precisely one edge incident on K for each K E t m a , .  

Since each clique K E t,,, is eliminated during this first step, none of the edges added 
during subsequent steps can be incident on K .  It follows that each clique in t,,, is 
adjacent to  only one clique in Talg, and thus C,,, C CT,~, .  Since t,,, is a maximum 
cardinality leaf set, C T , , ~  = t,,,, which concludes the proof. 

4.3. Diameter minimization in the new algorithm 

For any clique tree 1' E 7~ and any pair of cliques K ,  K' E Kef, let &(IC, I{') be the 

distance from K to  K' along the single path Connecting the pair in T. The diameter of 

T is given by diam(T) := niax {&(IC, K')},  where K and K' range over every distinct 

pair of cliques taken from KG. Of course, it suffices to limit the range of K and K' 
to  every distinct pair of leaves taken from CT. This section proves that the algorithm 

in Figure 4.2, in fact, finds a clique tree Tmin that minimizes diam(T) over all clique 
trees T E 7G. This is, of course, equivalent to  finding a clique tree of minimum height. 
To proceed, we show in Lemma 11 that when P = 9' in the proof of Lemma 2 (see 

Figure 3.1), the diameter of the new tree is no more than the diameter of the original 
tree. We then show that for any maximum cardinality leaf set L,,,, there exists a 

minimum-diameter clique tree Tmin E 7~ for which CT,,, = C,,,, after which the 
main result follows by a simple induction argument. 

Lemma 11. Assume lKcl 2 3. Let K E C ( S )  and suppose K is not a leaf of the 
clique tree T E 7 ~ .  Let 1' be a neighbor of K in T such that K n P = S .  Then there 
exists a clique tree T' E 7G for which the following properties hold: 

1. K is a leaf of 7''. 

2. The sole difference between T and Ti  is that each edge {e, K }  incident on K in 
T ,  with the exception { P ,  K } ,  has been replaced with the edge {C,  P }  in T'. 

3. diurn(T') 5 diam(1'). 

Proof. First, note that the existence of a neighbor P of li in T for which K n P = 
S = S e p ( K )  is ensured by Lemma 1. Now consider the restructured clique tree T' 
produced in the proof of Lemma 2 when P = P' (see Figure 4.3). That the first two 

properties hold for T and T' follows directly from the proof of Lemma 2. To verify 

the third property, first note that the only paths whose lengths are longer in T' than 
they are in T are those connecting K to some node K' in one of the moved subtrees. 
Moreover, the path connecting Ii and 11'' in the restructured tree is no longer than the 
path connecting li" and P in the original tree (see Figure 4.3). It follows that making 
all the neighbors of IC (except P )  neighbors of P cannot increase the diameter. w 
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Figure 4.3: Transformation of 1’ into T’ in which K is a leaf and for which diam(T’) 5 
diain(T) ,  as discussed in the proof of Lemma 11. 

Lemma 12. Assume l l C ~ l  2 3 and let T E 7 G  be any clique tree for which ILTI 2 
I C ~ I I  for all T’ E 7b. Then there exists a minimum-diameter clique tree T,,, E T,: 
such that LT,,,, 1 L y  . 

Proof. Let T F 7~ be chosen as in the premise. Choose a minimum-diameter clique 
tree T,,, 7~ for which CT-,,, contains as many of the leaf cliques belonging to  C y  
as possible. By way of contradiction, assume that LT,,,, # Lr. Since ICT( 2 (LT- ,~( ,  

there exists a leaf cliqiw I< E CT - L T ~ , ~ .  Without loss of generality, suppose that 

K E L(S). Since l l C ~ l  2 3 and IK(S)l 2 2, at least one clique K’ E K ( S )  is not a leaf 

in T .  
Now consider the subtree of T,,, induced by K ( S ) .  Let P E K ( S )  be the clique 

adjacent to K along the path from 1; to  I<‘ in the siibtree of T,,, induced by K ( S )  
(possibly P = K’). Observe that if P - 1;’) then P is not a leaf of T ,  and if P # K‘,  
then P is not a leaf of T,,,. It follows that P is not one of the leaf cliques that T 
and Yk,,, have in common. Thus, using JJemma 11 t o  restructure T,,, (see Figure 4.3) 
results in a clique tree also of minimum diameter, but with one inore leaf clique K in 
common with T than originally possessed by T,,,. ‘This is contrary to  our assumption 
about T,,,, which concludes the proof. II 

Recall that the tree obtained by pruning the set of leaves LT from T E TII is denoted 
by Y’ \ LT. We let S i m n ( L ~ )  be the union of all simplicial node sets S ’ i r n ~ ( K )  where 
I< E CT. We are now ready to prove our main result. 
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Theorem 4.1. The algorithm in Figure 4.2 generates a clique tree of minimum diam- 
eter. 

Proof. That the algorithm generates a clique tree was proven in Lemma 10. The proof 

that the clique tree has minimum diameter is by induction on m = IKcl. The base 

steps m = 1 and m = 2 are trivial. Let G be a chordal graph with m 2 3 cliques and 
assume that the algorithm minimizes clique tree diameter for any chordal graph with 

fewer cliques. Let Tals be a clique tree generated by the algorithm. 

CG chosen for 

elimination during the first major step of the algorithm. Remarks 2 and 3 in the 
previous subsection imply that the first major step eliminates the nodes in SimG(CTal,). 
Clearly, Talg \ t ~ ~ , ~  is the tree generated by subsequent major steps of the algorithm. 
Moreover, these Subsequent steps are precisely the same as applying the algorithm 

directly to  the graph G \ S i m c ( L ~ ~ , , )  with no prior elimination step. It follows from 
the induction hypothesis that Talg \ L T ~ ~ ~  is a minimurn-diameter clique tree of the 
chordal graph G \ Simc(LTafg).  

By Lemma 12, there exists a minimum-diameter clique tree Tmin E IC: such that 

CT,,,, = Thus, Talg \ LTals and Tmin \ CT,,, are both clique trees of G \ 
Sim~(&,~,). It follows that 

By Lemma 10, is the maximum cardinality leaf set t,,, 

Note that whenever m 2 3, elimination of all leaves of any clique tree results in a tree 

whose diameter has been reduced by two. Thus we can write 

which proves the result. m 

5 .  A linear time implementation 

With careful attention to details, we can devise a linear time implementation of our 
minimum-diameter clique tree algorithm (;.e., an O(lVl + I GI) implementation). The 
order in which the cliqiies are eliminated from H can be viewed as a block variant of the 

Jess and Kees ordering. We refer the reader to [20,23,25] for a description of 1) the basic 
Jess and Kees ordering scheme, 2) its use in minimizing the height of the elimination 
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trees associated with a sparse Cholesky factor [25], and 3) two implementations of 

the algorithm [23,25]. Lewis et al. [23] describe a very efficient implementation of the 

algorithm in great detail. Many of the techniques used in their implementation are 
also helpful in devising an efficient implementation of the minimum-diameter clique 

tree algorithm in Figure 4.2. Where appropriate, we refer the reader to  [23] for details 

that apply to  both algorithms.6 

clique tree algorithm. Section 5.1 presents an eficient algorithm for selecting a max- 

iniurn cardinality leaf set L,,, C, LH in line 4 of Figure 4.2. Section 5.2 introduces 
a detailed version of the minimum-diameter clique tree algorithm and verifies that it 

correctly implements the algorithm in Figure 4.2. Finally, Section 5.3 demonstrates 

the linear time complexity of the new algorithm. 

This section discusses several implementation issues specific to  the minimiim-diameter 

5.1. Selection of a maximum cardinality leaf set 

Consider the problem of selecting a maximum cardinality leaf set C,,,, C LH in line 4 
of Figure 4.2. (Computing LH will be discussed later.) The algorithm to calculate 

Lmnr, shown in Figure 5.1, considers each clique in LH in some arbitrary order. To 

01 11’ t- H 
02 &n&.T +- 0 
03 far K E LH do 
04 
05 
06 
07 
08 end 

Figure 5.1: Algorithm for generating a maximum cardinality leaf set. 

test A’ E LIT for inclusiori in f&,,, the algorithm checks to see if there has been no 
change in the parameter a(K) .  (That is, does o ~ ~ l ( K )  = ~ H ( K ) ? )  The remainder of 
this subsection is devoted to  proving that this test can be used to  obtain a maximum 
cardinality leaf set t,,,, Cr LH. First, Lemma 13 gives a useful condition that holds if 

5Note that the elimination tree is n o t  a clique tree, and minimizing its height moreover does not 
minimize the height of the associated clique tree. 

‘The notation used in [23] differs a great deal from that found in this paper. For example, their 
ancestor sets, Anc(h’), are the separators, and S ( K )  contains the simplicial nodes of K .  Also note 
that their definition of clique trees is more restrictive than the one we are using. 
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and only if c r ~ , ( K )  = c r ~ ( K ) ,  and then Theorem 5.1 proves the algorithm in Figure 5.1 
correct. 

Lemma 13. Let S E S(C,) and choose K E CH(S) C LH. When K is processed by 
line 4 of the algorithm in Figure 5.1, qp(K)  = CTH(K)  if and only if l K ~ p ( S ) l  2 2. 

Proof. Let K E C H ( S )  C CH, and consider the iteration of the algorithm that processes 

K .  By definition, axf(K) = 1S1. Tf l lC~,(S) l  2 2, then by Lemma 6, c r ~ ~ ( l i )  2 \SI. 
Since K H I  c KH, it follows from Lemma 6 that CTH,(K) 5 CTH(K)  = IS(. Thus, 

By Lemma 6 if a~f,(K) = a l f (K) ,  then IK n K‘I = IS1 for some clique K’ E K H I  - 
{ K } .  From Corollary 1 and the fact that S j y ( K )  = { S } ,  we have K fl K” 5 S for every 

clique K” E I C H  - { K } .  Consequently, K n K’ = S, and therefore K, K’ E Kfp(S), 
which proves the result. m 

O H I ( K )  = aff(li). 

Theorem 5.1. The algorithm in Figure 5.1 computes a ma.xirnum cardinality leaf set 

~ m u x .  

Proof. Consider the partition of into leaf cohort sets, 

Lemma 5 gives the two conditions that must be satisfied by CmaZ: 1) when C H ( S )  C 
K, (S)  every cliqiie in L J ~ ( S )  must be included in L,,,, and 2) when C H ( S )  = K H ( S )  
precisely one clique in L H ( S )  must be excluded from L,,,. We will consider an 
arbitrary leaf cohort set L l l ( S )  = { K I ,  K z , .  . . , K t }  C CH, with the cliques listed in 

the order in which the algorithm processes them. (That cliques from other leaf cohort 

sets may be processed between two neighboring cliques in the list will have no bearing 

on the argument.) 

First, note that IK,p(S)l 2 2 when the algorithm processes li;, 1 5 i 5 t - 1. 

Therefore, by Lemma 13, CTH,( I~”~)  = c r ~ ( K ~ ) ,  and K; is included in C,,,. Now consider 

whether or not the algorithm includes Kt in L,,,. There are two cases to consider. 
First, suppose C H ( S )  = K H ( S ) .  It follows that K H , ( S ‘ )  = {Kt} when the algorithm 

finally examines l C t .  Consequently by Lemma 13, a ~ , ( f i ~ )  # a ~ ( I i ~ ) ,  and thercfore Kt  
is not selected, as desired. 

Now, suppose C H ( S )  c 1 c ~ ( S )  and consider the following two subcases. First, 
assume Klg(S)  L I T .  Tn this case, l K ~ t ( S ) l  2 2 when the algorithm examines ICt, 
and by Lemma 13, Kt is selected as desired. Now, assume K ~ ~ ( S >  C_ LH. Let JC’ E CH 
be chosen so that IC‘ E K , ( S ) - C ~ ( S ) .  It follows that K’ E LH(S ’ )  where 5’ c S‘ .  The 
key to  the proof is to  choose K’ that maximizes IS’/ among all the leaf separators S‘ E 
~ ( C H )  for which 5’ c 5’’. Since S c S’, we have K H ( S ’ )  5 t c ~ ( S )  C L H .  It suffices 
to show that K,(S’) = Ll*(S’), for we have shown in the previous paragraph that if 
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ICH(S’) = L,(S’), then the “last” member of LN(S’)  to  be processed by the algorithm 

is excluded from L,,, and thus retained in the graph H’ when K t  is exammined by the 

algorithm. Consequently, /KH,(S)I 2 2, and therefore Kt is included in Emax as 
required. To verify that LH(S’) = lC~(s‘), assume that K” E ICH(S’) - Lw(S‘) .  It 

follows that K” E LH(S” )  where S‘ c S”, contrary to  the maximality of IS‘I. Thus, 

we have K,(S’) = LH(S’) ,  which concludes the proof. s 

5.2. Implementation details 

We now turn our attention to  a detailed version of the minimum-diameter clique tree 

algorithm. This algorithm, presented in Figure 5.2, is essentially an expanded version 

of the algorithm in Figure 4.2. Practically missing altogether from the short version is 
the initialization phase comprising lines 1-8 in Figure 5.2. Line 4 in Figure 4.2 has been 

expanded into lines 10-21, which implement the algorithm for finding Emaz displayed 

in Figure 5.1 and also build a data structure used to  record the cliques in Lmax and 
the new edges of the minirnum-diameter clique tree. Using this data  structure, lines 
22-30 implement lines 6 and 7 of Figure 4.2, as well as construct the leaf set LH for 
the next iteration through the main loop. 

The remainder of this subsection takes a closer look at  the detailed version of our 

minimum-diameter clique tree algorithm and gives the arguments needed to  prove that 

it does indeed correctly implement the algorithm in Figure 4.2. We begin with a 

description of the method used to  represent the “current” chordal graph. After that ,  

we focus on the correctness of the while loop (lines 3-10 in Figure 1.2, lines 9-32 in 

Figure 5.2) that constitutes the bulk of the algorithm. In Section 5.2.2 we address the 
question of correctness for one iteration through the while loop, assuming all data are 

correct as the iteration begins. Then in Section 5.2.3 we argue that the data are correct 
a t  the beginning of each iteration through the while loop. 

5.2.1. Representation of the chordal graph 

The algorithm maintains a clique tree T’ f 7f1t and no other representation of the 

reduced chordal graphs (lines 1, 13, 18); the chordal graphs N and R’ are “updated” 

in the comments strictly for notational purposes (lines 1, 18, 31). 
Initially, T‘ E 7 ~ .  (Details on an appropriate choice of 2“ E 7~ are provided in [23].) 

The clique tree T‘ is updated as each leaf clique is eliminated, much as FI’ is updated in 
Figure 5.1 as the leaf cliques are eliminated. An elimination step performed during the 

for loop in lines 11-21 removes K E LH from T” to  obtain the next clique tree 1’‘ 7~ft 
where H’ is the new reduced graph I€’ +- H‘\SimHI( I<)  (line 18). When K E L p ,  the 
reduced clique tree is computed by simply “pruning” K from T‘ (i.e., T‘ c- T‘ \ { K } ) .  
However, when A’ C T , ,  the operation required to coinpiite the new clique tree is a 
bit more complicated and requires some restructuring of the tree. We will let T‘\T { I { }  
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04 
05 
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07 
08 
09 
10 
11 
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19 
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21 
22 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

[Input: T E 7~ and O G ( K ) , ~ G ( K )  for K E KG] 
[Output: A minimum-diameter clique tree Tmin = ( l C ~ , € ~ i ~ )  E 7 ~ ]  
T ' e T  

for K E KC;H do 

[ H  +- G; H ' t  G] 
Emkn 0; CIf +- 0 

[initialization] 
a H , ( K )  aG(K); aff(l<) 4-- o c ( K )  
P H , ( K )  +- w ( K ) ;  P H ( W  +- P G W )  

C ( K )  +- 0 
if OH(K) + ~ H ( K )  = IXl then CH +- LH U {It"} 

end for 
while IK,l 2 3 do [main loop] 

P + f l  
for K E CH do [build C,,, in sets C ( P ) ,  P E P] 

[include Ir' in L,,,] 

[include P in set of parents] 

if oHt( I i )  = O H ( K )  do 
Select {K, P} E ET, for which [It' n PI = a~(1 t ' )  
P t P U { P )  
if K E P then P t P - { IC}  
C(P)  t C ( P )  U { K }  U C ( K )  

T' +- 'I" \,. {IC} 
Update a ~ t ( P )  and p p ( P )  

[update children of PI 
C( K )  +- 0 

[H' + H' \ S i m ~ ( K ) l  

end if 
end for 

for P E P do 
LEI e 0 

[prepare for next iteration of the while loop] 
[record new edges of T,;,] for IC E C ( P )  do 

end for 
Emin + Emin u {IC, P} 

C ( P )  +- 0 
QH(P) +- w ( P ) ;  PH(P) +- PH@) 

if OH(P) t P H (  P )  = [PI then CCEI + CH U { P }  
end for 
[ H  4- H'] 

end while 
if llClll = 2 do 

end if 
Emin t Emin U {It", I<'} where {IC, K'} = K H .  

Figure 5.2: Detailed algorithm for generating a minimum-diameter clique tree. 
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denote the tree obtained by first performing the appropriate restructuring of 1'' and 

then removing the leaf clique IC from the tree. The required restructuring operation 

(needed to  transform K into a leaf) bas already been introduced in Lemma 11 and 
illustrated in Figure 4.3. Based on this restructuring operation, T'\T { K }  is illustrated 

in Figure 5.3. 

T :  

T \T  {IC} : 

Figure 5.3: Tra.nsformation of T into T { K } .  
I--.. .....- ._ 

Lewis et al. I231 used this technique for eliminating an arbitrary cliqiie K C CIJ 

from a cliqine tree T' E TH,, in which K may or may not be a leaf. The interested 

reader should consult [23] for a detailed description of the data structure required to 

implement it efficiently. Section 5.3 contains a brief discussion of the more important 
features of this data structure and how it is used. 

5.2.2. Correct implementation of one iteration of the while loop 

Lines 10-21 and 24-26 in Figure 5.2 are used to actually implement the operations 
within the while loop in Figure 4.2. (AI1 other statements inside the while loop in 
Figure 5.2 are used to update data for the next iteration through the while loop.) As 
stated earlier, the for loop in lines 11-21 implements the algorithm for finding E,,, 
displayed in Figure 5.1 and also builds a data structure used to collect the cliques in 

.C,,,, and the new clique tree edges to be placed in E,,, by lines 24-26. 
To see that the loop in lines 11 21 correctly implements the algorithm in Figure 5.1, 

observe that lines 3, 4, 6, 7, and 8 of Figure 5.1 correspond directly to  lines 11, 12, 18, 
20, and 21 respectively of Figure 5.2. Lines 13-17 of Figure 5.2 manipulate the data 
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structure for collecting the leaves and new edges, as well as perform the operation in 
line 5 of the algorithm in Figure 5.1. 

Two issues connected with operations performed by this loop necd further discus- 

sion. First, note that after the algorithm eliminates a leaf clique IC in line 18, the only 
parameters updated are cqp(P) and P H / ( P )  in line 19. We must show that line 19 is 

sufficient to maintain correct parameters u~t(1C’) and p f f t (  K ’ )  for all cliques K’ E K H , .  
Second, we must verify that the data structure correctly stores a maximum cardinality 

leaf set C,,, and a set of new edges connecting each member of L,,, to an appropriate 
“parent” clique. 

The following proposition shows that with each graph reduction (line 18) the only 

clique K‘ for which the values of a ~ t ( K ‘ )  or p ~ j ( K ‘ )  may have changed during the 
iteration of the for loop is the clique P. As a result, line 19 of Figure 5.2 correctly 
updates the only values qp(K’ )  and p ~ , ( I i ’ )  (K’ E X l ~ t )  that may require changing 
due to  the elimination of IC. 

Proposition 1. Let K E .C,(S) and 11’ = H \ Sim(K).  If (TH,(P) # UH(P) or 
p ~ t ( P )  # ~ H ( P )  for any clique P E X l ~ p ,  then K I J ( S )  = { K ,  P}. 

Proof Assume a ~ p ( P )  # ~ H ( P ) .  It follows that any separator S’ E ~ H ( P )  for which 
O H ( P )  = IS’] is not a member of M f f , .  From property 4 of Lemma 9, the multiset of 

separators of the reduced graph H’ = N \ Sirn(K) is given by Mff - {S}. It follows 

that S’ is unique and moreover S‘ = S .  By way of contradiction, assume lKkp(S)l 2 2. 
Then by Lemma 6, q p ( P )  2 IS] = a f ~ ( P ) .  However, since K I I t  = Klf - { K } ,  by 

Lemma 6, C ~ H (  P )  5 ]SI. Consequently, q p ( P )  = CTH(P) ,  contrary to  our assumption 
that cqp(P) # a&’). Therefore K H , ( S )  = { P } ,  which implies that K f l ( S )  = {IC, P}. 

Now assume p ~ f ( P )  # pu(P) .  Since S i r n ~ ( P )  C S i m ~ t ( P ) ,  the assumption im- 

plies that there are some new simplicial nodes in P ,  ix. ,  , ! ! i m ~ ( P )  c S im~p(P) .  Note 
that the nodes of I€‘ that belong to  fewer cliques than they did in If are precisely those 

in S ,  and they belong to precisely one less clique (due to the reinoval of K ) .  As a result, 

the new simplicial nodes of P must come from S .  If IKslf(S)I 2 3, then removal of K 
from 11 would result in no new simplicial nodes at all. Consequently, I t c ~ ~ ( S ) l  = 2. 
Since new simplicial nodes appear in P ,  it follows that Y niust be the other clique of 
If that contains S ,  and thus KII (S)  = {IC, P } .  

We now turn our attention to the data structure used to maintain L,,, and the 

new clique tree edges. This data structure is composed of the following sets: 

1. Upon completion of the for loop in lines 11-21, the set P contains all the cliques 
in the remaining chordal graph H’ that will serve as parents of the leaf cliques 
eliminated by this major step. 

2. Also upon completion of the loop, the set C ( P )  ( P  E P) contains all members of 

C,,, that will become children of P in l’,in. That is, C,,, comprises the sets 



- 24 - 

C ( P )  ( P  E ’P), a,nd for each K f C ( P ) ,  the edge { K , P }  will be added to  E m i n .  

These sets a.re computed as follows. Upon entry into the for loop, P = 0 (line 10) 

and C ( K )  = 0 for every clique K E KH (lines 7, 17 and 27). As the loop processes a 

clique X E C H  that will be eliminated, it chooses in line 13 a neighbor P of 11 in the 
current clique tree T’ that also contains S ~ ~ H ( K ) .  Lines 14-15 update P by adding 
P and removing K, if necessary. In line 16, 41 and the members of C ( K )  are merged 
into C ( P ) ,  or loosely speaking , K and the ““children” of K are made children of P. 
(This corresponds closely to the restructuring operation described in Lemma 11 and 

illustrated in Figure 4.3). 
‘To show that the scheme works, we need to show that three properties hold T L ~ Q ~  

completion of the loop. The first two are trivial; we leave it to  the reader to confirm 
that 

1. P C K H , ,  and 

2. The union of the disjoint sets C ( P )  ( P  E P )  is a maximum cardinality leaf set 
emaz of a. 

The following proposition states and proves the third required property. 

Proposition 2. Upon completion of the for loop in lines 11-21 in Figure 5.2, we have 

SeprT(11) c B for every clique I{ E C ( P )  (P  E P). 

Proof. The following simple induction argument suflices. The result holds vacuoiisly 

before the first iteration of the loop is begun. Now we assume that it holds as an 
iteration of the loop begins, and will show that it holds when the iteration is completed. 

Let H’ be the graph remaining as the iteration begins, K the member of chosen 
for elimination, and P the selected neighbor of IL‘ in the current clique tree (line 13). 
Upon completion of the iteration, there is a new version of C ( P )  containing K ,  C ( K ) ,  
and those cliques belonging to C ( P )  at the beginning of the iteration. By the induction 

hypothesis, the property continues to hold for those cliques that were contained in 

C ( P )  at the beginning of the iteration. Line 13 of the algorithm implies that the 
property holds for K. Note that by property 2 above, 
C E LH. By induction we have SepH(C) 5 IC. Moreover, since IC E LEI, we have 

S e p H ( C )  C S‘eppi(IC), which by line 13 of the algorithm is a subset of P. Conseqiiently, 

SepH(C)  c P ,  and thus the result holds for the new version of C ( P ) .  Finally, by 
induction the property continues to hold for the sets C ( P ’ ) ,  P’ f F’ - { P } ,  none of 
which are modified during the iteration. 

Now, choose C E C(1C). 

It follows from Proposition 2 and the discussion preceding it that the edges stored 
implicitly in the sets P and C ( P )  are precisely the edges that should be added to ET,,;,, 
in lines 6 a i d  7 of Figure 4.2. The detailed algorithm adds these edges to Emin in lines 

24-26. 
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5.2.3. Correct data to begin each iteration of the while laop 

We have described the most important features of the detailed version of our minimum- 
diameter clique tree algorithm, and have shown that lines 11-21 and 24-26 correctly 

implement the lines inside the main loop in Figure 4.2. All that remains to  be shown is 
that the data structures and parameters are correct as each iteration of the main loop 

in Figure 5.2 begins. 

We have already discussed how a clique tree representation of H' is maintained. 

More details on this issue can be found in the next subsection and in [23]. In addition, 
from Proposition 1 we know that the only cliques for which OH,(&") # Q H ( K )  or 

p p ( K )  # p ~ f ( K )  at the beginning of the loop in lines 23-30 are the cliques belonging 

to P. Since line 28 updates ar~(1i) and ~ H ( K )  for each clique K E P, these values 
will be correct a t  the beginning of each iteration of the main loop. Thus, we need to  

show only that LEI is correct a t  the beginning of each iteration. 

Note that line 6 uses Lemma 7 to construct the initial list L I ~ .  The next proposition 
justifies the use of lines 22 and 29 to  construct the leaf sct LH to  be used in the next 

iteration. 

Proposition 3. Upon entering the for loop in lines 23--30 of Figure 5.2, L I ~  C P. 

Proof. Assume the algorithm is entering the loop, and let K E L H I .  If K E C H I  - LH, 
then it follows from Lemma 7 that afp(1i) # O H ( K )  or pf;r f (K) # pli(K), and by 
Proposition 1 we have K E 'P. Now assume Ir' E Lflt n LH. It follows that the 

algorithm excluded li from L,,, because ap(1r') # a ~ ( 1 i )  when K was considered 
for inclusion. So again by Proposition 1 we have K E 'P. 

5.3. Complexity 

To facilitate our discussion of the algorithm's time complexity, define n := IV(, e := IEI, 
m := IKGI, and Q := lKt l .  (Recall that G = (V,E).) 'It is well-known that ~n 5 n 
and q 5 e [12], and moreover in some practical applications Q << e, as  pointed out in 

An appropriate initial clique tree T f 7 G  can be computed in O ( n  4- e> time by 

applying a slightly modified version of the maximum cardinality search algorithm to 
the underlying chordal graph G 126,301. We should note however that the input clique 
tree is not obtained in this fashion in the sparse matrix application area. A clique tree 

stored in an appropriate data structure can be obtained very efficiently more or less as 
a by-product of a data structure generated in the course of solving tlze linear system 
at hand (see [23]). 

A singly-linked list suffices to  represent G f j  throughout the computation (see lines 2, 
6, 11, 22, 29). Thus, the time complexity of the initialization loop (lines 3 8) is O(m). 

Consider the for loop in lines 11-21 ezcluding bines 13, 18, and 19. (These three 

~ 3 1 .  
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lines are discussed later.) It follows trivially from Lemma 5 that ~LHI 5 21Lmazl. 
Consequently, the total nnmber of iterations through this loop during the course of the 
algorithm is O(m) .  Efficient implementation of the sets P and C( P )  in lines 14-17 is 
quite easy. An array of markers can be used to  detect membership in 
time (see line 15). In addition, the set P should be implemented as a doubly-linked list 

t o  enable insertion and deletion of members in constant time (see lines 10, 14, 15, 23). 
The sets C ( P )  can be implemented as singly-linked lists (see lines 7, 16, 17, 24, 27), 
with a pointer to the tail of each list to  implement the set union in line 16 in constant 
time. Thus, the total work associated with the lines of the loop not excluded from 

consideration is O( m). 
Consider now the for loop in lines 23-30. The total work associated with lines 24-26 

is O(m) .  Since IPI 5 lLmaTl and each of the lines 27-29 is a constant-time operation, 
the total work required by this loop is O ( m ) .  

Finally, we consider the lines of the algorithm associated with accessing or changing 

the clique tree used to  represent the current reduced chordal graph (lines 1, 13, 18, and 

19). The key lines to  be discussed are 13, 18, and 19. 
The data structure used to represent clique trees in [23] and the techniques used to  

eliminate cliques from it are sufficient t o  implement these three lines efficiently. The 
data  structure is a rooted clique tree with the nodes of each clique listed in ascend- 

ing order by some perfect elimination ordering of the underlying chordal graph. (If 
necessary, such an ordering can he obtained from the maximum cardinality search al- 
gorithm used to  construct the input.) The data structure initially has the children of 
each parent listed in descending order by the size of the separator each shares with 

the parent. Sorting the nodes of the cliques can be done in O(q) time, and sorting 

the children in their lists can be done in O ( n )  time, both using a bucket sort. As the 

algorithm proceeds, careful maintenance of a partial ordering in the lists of children 
enables selection of P in line 13 after inspecting at most two neighbors of X in T’, 
namely the parent of K and the first clique in its list of children. By thus avoiding a 

search among all neighbors of li, line 23 becomes a constant time operation. 

Computing 1” \r {A’} in line 18 and updating the parameters in line 19 requires a 

few simple operations for each node of S e p H ( K )  and other work of lower order time 

complexity. Consequently the total work done in lines 18 and 19 is O(q). The details 

can be found in [23]. 
From the above discussion and the fact that rn 5 n, the algorithm has O ( n  + q )  

total time complexity. This, together with the time required to  obtain the input, gives 
us an O ( n  + e>  time algorithm. 

6. Concluding remarks 

The primary contribution of this paper is an efficient algorithm for generating a minimum- 
diameter clique tree, along with an a.nalysis of its time complexity. The algorithm is a 
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natural generalization of the obvious greedy algorithm for rooting an ordinary tree in 
order to  minimize its height, and can be viewed as a block variant of the Jess and Kees 
ordering algorithm [23,25]. To achieve this generalization, we defined the leaf set CG to  

include every clique that is a leaf in some clique tree in IC.. We then introduced charac- 

terizations of the cliques in LG that help to  compute the set very efficiently. This was 

followed by a characterization of maximum cardinality leaf sets. We then presented the 
obvious greedy algorithm, which repeats the following major step until the graph has 

been eliminated: compute a maximum cardinality leaf set, eliminate these leaf cliques 
from the graph, and collect an appropriate set of clique tree edges incident upon these 
leaves. We then showed that this algorithm generates a minimurn-diameter clique tree. 

To demonstrate that the new algorithm executes in O ( n  + e )  time, we addressed 

several implementation issues, the most important of which is efficient computation of 
the maximum cardinality leaf sets. An actual code based on the detailed algorithm 

would maintain a clique tree representation of the current chordal graph that may not 

have minimum diameter. Lewis et al. [23] contains details about the data structure 

used to  store this sequence of clique trees and how they are used to implement the 

elimination process very efficiently. 

We believe that our algorithm will be useful in a number of application areas. Of 
particular interest to us is its use in an efficient implementation of a parallel sparse 
Cholesky factorization algorithm and also an efficient parallel method for calculating 
probability distributions in a probabilistic knowledge-based system. The next two 
paragraphs briefly discuss the application of our results in these two areas. 

Gilbert and Schreiber [15] have recently implemented a fine-grained parallel sparse 
Cholesky algorithm on the Connection Machine, a massively-parallel distributed-memory 

SIMD machine (Single-Instruction-Multiple-Data). Their algorithm is a highly parallel 

variant of the multifrontal method for sparse factorization [7,24]. To improve perfor- 

mance they use an elimination sequence obtained by repeating the following step until 

all nodes have been eliminated: remove all simplicial nodes from the current chordal 

graph. Our results can be used to  demonstrate that the number of major steps taken 
by their ordering algorithm, and consequently their factorization algorithm, is the min- 
imum possible. This is of practical importance because between each major step (and 
only then) their factorization algorithm must issue calls to  the Connection Machine’s 

general router t o  accumulate results and communicate them from one processor to an- 

other t o  set up the next major step. Calls to  the general router are so expensive that 

the height of the clique tree, though not the dominant time-complexity tcrm in a theo- 

retical sense, is nonetheless dominant in the practical sense. Their ordering algorithm 

is based on this assessment, and the analysis in this paper can be used to  demonstrate 

that they have minimized the number of calls to the router. In addition, the results in 
this paper possibly provide a basis for reorganizing their factorization algorithm to im- 
prove its efficiency; however, further study will be required to  determine if substantial 
improvements are indeed possible. 
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Lauritzen and Spiegelhalter [22] have presented a technique for calculating probabil- 

ity distributions in knowledge-based systems in which probabilities of discrete-valued 
random variables are an inherent component of the encoded knowledge. Briefly, a 

probabilistic knowledge-based system is a Markov network M = (V, E M ,  P r ) .  ( M  is a 

digraph with nodes V being the system random variables, directed arcs EM taken from 

V x V, and probability distributions Pr corresponding to  the acyclic arc-structure.) 
The goal is to  maintain the probability distributions Pr as they vary with time and 

queries of the network. To achieve this, the directed graph M is first converted into the 
corresponding undirected graph G, then edges are added as needed to  convert G into a 

chordal graph. The probability distributions can be maintained with added efficiency 

by using a clique tree representation of G to  organize the computation. Backward and 
forward propagation of data in the clique tree, which in practice may require the manip- 
ulation of large tables of probabilities, is a fundamental part of the method. England 

et al. [9,10] describe aspects of the Pr component of M that render certain sections 
of the data propagation computationally independent. This data independence can 

be exploited not only to  avoid unnecessary computations in a conventional sequential 

implementation, hut also to allow simultaneous execution within as many cliques as 

possible in a parallel implementation. To complement these results and allow for an 
even greater amount of parallelism in the solution process, it may be advantageous to 

further exploit the structure of the underlying graph of N .  One way to do this is to 
use a clique tree representation of minimum diameter. 

There are several open questions worth mentioning. In light of the algorithm’s pos- 
sible applications, it is worthwhile to consider how to implement it (or some variant 

thereof) to run efficiently on a parallel machine, particularly a fined-grained machine 
such as the Connection Machine. Our algorithm finds a maximum-weight, minimum- 

height spanning tree of the clique intersection graph of a given chordal graph. Camerini 

et al. [5] have shown that for general weighted graphs this problem is NP-complete. It 

would be interesting to know whether or not a maximum-diameter clique tree (or equiv- 

alently a maxirnum-weight, maximum-height spanning tree of the clique intersection 
graph of G) can be found in polynomial time. 
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A. Notation 

For easy reference we have included the following table of informal definitions for most 
of the notation introduced in the paper. 
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~~ ~ ~ 

G = (V, E )  

T = (KG,€) - 
A chordal graph (G, G', H and HI) .  

A clique tree ( T ,  T', Tmst, Tct, Talg, and T,nin)s 

The maximal cliques of G ( K G ,  K G I ,  K I I ,  and KH!).  

The cliques containing S C V ( K ( S ) ,  JCH(S), XH(S'), and - 

KIP ( 5' 1. 

7 G  

€ 

- 

- 
The clique trees of G (7;? TGI, 7 ~ ,  and 7 ~ 1 ) .  

The edges of a clique tree ( E ,  € T I ,  and Emin) .  

M T  

M c  

- 

- 
The multiset of separators of 1' ( M T  and M p ) .  

The multiset of separators of G ( M G ,  MGI ,  M H ,  and 

M H ' ) .  

- The set of separators included in clique K (S(1i) and 

The set of maximal separators among those in clique I( 
(S(Ii) aad S H ( K ) ) .  
The set of leaf separators ( ~ ( C G )  and ~ ( L H ) ) .  

S H (K)). 
- 

- 

- 

-- 

- 

-~ 

The leaves of T (&, LTI,  i c ~ ~ , ~ ,  and .Cy,,,,,,). 

The leaf cliques of G' (LG, LGI,  C H ,  and e,,). 
A maximum cardinality set of leaf cliques. 

The leaves 66' E: CG for which s(K) = (5') ( L ( S ) ,  C(S'), 
L H ( S ) ,  CH(S ' ) ,  and C:H(S")). 

- Set difference operator. 
- 

-- 

G \ A is the subgraph of G induced by V - A .  
T\T ( K }  is the removal of fi E CG froin T ,  with restructuring 
when Ii $! Ly-. 

- The size of the largest separator in S(#)  (a (# ) ,  O G ( K ) ,  
OH( K ) ,  and ae,(In')). 

The number of simplicial nodes in clique K ( p ( K ) ,  p ~ ( I c ) ,  - 

P H ( q  and P H ' ( K ) ) .  
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